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Rigid Shape Matching



Iterated Closest Points (ICP)

/ / /
//// / Part B

/ (moves, rotation & translation)

/ / / Part A

(stays fixed)
The main idea:

e Pairwise matching technique
= Registers two scans
= Multi-part matching is a different story (more on this later)
e We want to minimize the distance between the two parts

= We set up a variational problem
= Minimize distance “energy” by rigid motion of one part



Iterated Closest Points (ICP)

Problem:
e How to compute the distance
e This is simple if we know the corresponding points.
= Of course, we have in general no idea of what corresponds...
e |CP-idea: set closest point as corresponding point
e Full algorithm:
= Compute closest point points

= Minimize distance to these closest points by a rigid motion
= Recompute new closest points and iterate



Closest Points

Distances:
/ / /
/ s / Part B
/ / (moves, rotation & translation)
/ / Part A
(stays fixed)
Closest points distances:
/ ¥
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o \ / (moves, rotation & translation)
| Part A
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Iteration
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Variational Formulation

Variational Formulation:

n
argmin jdist(Rx +t,4)°dx ~ argmin Z(RPEA) +t— pqugrest(,.)
ReSO(3), % ReSO(3), -1
teR? teR®

Variables: Orthogonal matrix R, translation vector t



Numerical Solution

Question: How to minimize this energy?

e The energy is quadratic argmin J‘dl
e There is only one problem... ~ReS0(3), 5 |
= Constraint optimization teR’

_______________________________

= We have to use an
orthogonal matrix...

e This problem can (still) be solved exactly.



Solution

First step: computing the translation

e Easy to see: average translation is optimal
(c.f. total least squares)

1 n
° t= _Zpl('A) B pgle;c)zrest(i)
N4
e This is independent of the rotation
Second step: compute the rotation

e (2a) Compute optimal linear map
e (2b) Orthogonalize



Optimal Linear Map

First:

e Subtract translation from points p{4) = p.¥) —t
e Then: Solve an unconstrained least-squares problem

: M (4) _ 1, (B)
VI _ 1"” . Mpz _ pnearest(i) unknf)wns
(9 variables)
m;, m,, m3,1\

N ~(4) _ 1 (5)
YVi=1.n: m1’2 m2,2 mg,z p,- _pnearest(i)

\[My3 My3 M35

e Finally: compute the orthogonal matrix R that is
closest to M.
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Least-Squares Optimal Rotation

How to compute a least-squares (Frobenius norm)
orthogonal matrix that fits a general matrix:
e Compute the SVD: M = UDV'

e The least-squares orthogonal fitis: R = UVT
(just set all singular values to one)

e We can compute this in one step:
= Solve the least-squares matrix fitting problem using SVD
= Omit the diagonal matrix straight ahead
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Generalizations

Convergence speed:
e Convergence of basic “point-to-point” ICP is not so great

= Typically: 20-50 iterations for simple examples

= Problem: Zero-th order method
(flip point correspondences in each step)

e Improvement: “point-to-plane” ICP
= First order approximation
= Match points to tangential planes rather than points
= Converges much faster (3-5 iterations for similar examples)
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Implementation

argmin J<Rx +t- nearest(zél),n(nearest(A))>2 dx

ReSO(3), %

teR3
L (A) (B) (B) ’
~ dIrgmin Z<Rp1 +1- pnearest(i) ’nnearest(i)>
ReSO(3), -1

teR3



Implementation

Implementation:

e We need normals for each point (unoriented) — kNN+PCA

e Compute closest point, project distance vector to its
normal

e Minimize the sum of all such distances:

n 2
: (A) (B) (B)
arg min Z<Rp1 +t- pnearest(i) 'nnearest(i) >
ReSO(3), -1

teR3
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Comparison

Point-to-point

19 iterations

N

(much more
accurate result)

1t
z

(accuracy problems)
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Implementation

Problem:

e No closed form solution for the optimal rotation with
point-to-plane correspondences

Solution:
e Numerical solution

e Setup non-linear optimization problem (rotation,
translation = 6 parameters)

e Use non-linear optimization technique

e Remaining problem: Parametrization of the rotations

= Trouble with singularities (spherical topology)
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Local Linearization

Standard technique: local linearization
e Transformation: T(x) = Rx + t

e Linearize rotations:

[cos(a) sin(a) o}[cos(m 0 sin(A)
T —

a,By

=| —sin(a) cos(a) O 0 1 0
0 0 1){—sin(f#) 0 cos(f)

|

1 0 0

0 cos(y) sin(y)
0 -—sin(y) cos(y)

|
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Local Linearization

Standard technique: local linearization
 Numerical solution: iterative solver
e We have a current rotation R~ from the last iteration:
e Taylor expension at RV —1):

0 a fp
T\ (x)=||-a 0 y|+IR'x
- -y 1

e Solve fort, o, 55, v (linear expressison — quadratic opt.)

n
argmin Z<R(’)pS.A) +t—p¥ n'®)

2
nearest(j)’ " nearest( j) >
a,p.yeR =1

teR3



Local Linearization

Then:

e Project R) back on the manifold of orthogonal matrices.
(for example using the SVD-based algorithm discussed
before)

e Then iterate, until convergence.

Why does this work?

e The parametrization is non-degenerate

= For large «, 3, 7, the norm of the matrix increases arbitrarily
(i.e.: the object size increases, away from the data)

= Therefore, the least-squares optimization will perform a number
of small steps rather than collapse.
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More Tricks & Tweaks

ICP Problems:
e Partial matching might lead to distortions / bias

= Remove outliers (M-estimator, delete “far away points”, e.g.
20% percentile in point-to-point distance)

= Remove normal outliers
(if connection direction deviates from normal direction)
e Sampling problems
= Problem: for example flat surface with engraved letters
= No convergence in that case

= Improvement: Sample correspondence points with distribution
to cover unit sphere of normal directions as uniformly as
possible
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Deformable Shape Matching



Example

What are the Correspondences?
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What are we looking for?

Problem Statement:

Given:

e Two surfaces S,, S, < R3

We are looking for:

e A reasonable deformation function f: S, > R3
that brings S, close to S,
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Example

?
-’ _.%
Correspondences?
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“A too much deformation
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This is a Trade-Off

Deformable Shape Matching is a Trade-Off:

e We can match any two shapes
using a weird deformation field

e We need to trade-off:

= Shape matching (close to data)
= Regularity of the deformation field (reasonable match)
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Variational Model

Components:

Matching Distance:
<//N—|(

Deformation / rigidity:

=
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Variational Model

Variational Problem:

e Formulate as an energy minimization problem:

E( 1: ) _ E(match) ( f ) 4 E(regularizer) ( f )

A (—(
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Part 1: Shape Matching

Assume:
e Objective Function:

f ., S
E(match)(f) — diSt(sz (Sl )’SZ) \ 2

nEw
as .,

-------
'''''''

e Example: least squares distance

M (f)= [dist(x,,S,)"dx, -Xiz.
S

Xlesl 1

e Other distance measures:
Hausdorf distance, Lp-distances, etc.

e L, measure is frequently used (models Gaussian noise)
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Point Cloud Matching

Implementation example: Scan matching

e Given: S;, S, as point clouds
= S, ={s,!Y, ..., s, 1)}
= S, =1{s,%, ..., s, %}

e Energy function:

Yaa,

a1y =I5 s, 0]
=1

e How to measure dist(S,,x)?

= Estimate distance to a point sampled surface
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Surface approximation

"y
......
Xu

Solution #1: Closest point matching

e “Point-to-point” energy

E(match) ( f ) |_
m

Zdlst(si(z), NNy s (si(z)))2
=1
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Surface approximation

"y
LN ]
Ll ]
"y

Solution #2: Linear approximation
e “Point-to-plane” energy
e Fit plane to k-nearest neighbors
e k proportional to noise level, typically k = 6...20
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Variational Model

Variational Problem:

e Formulate as an energy minimization problem:

E( .I: ) _ E(match) ( f ) 4 E(regularizer) ( f )

——( « =
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Part ll: Deformation Model

What is a “nice” deformation field? | (regularizer) ()

e [sometric “elastic” energies

= Extrinsic (“volumetric deformation”)
. . " . . /
= Intrinsic (“as-isometric-as -
possible embedding”) _—

e Thin shell model
= Preserves shape (metric plus curvature)
e Thin-plate splines

= Allowing strong deformations, but keep shape
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Elastic Volume Model

Extrinsic Volumetric “As-Rigid-As Possible”

e Embed source surface S, in volume

e fshould preserve 3x3 metric tensor (least squares)

E(regularizer)(f) _ H Vv _I]de

Vi

first fundamental form I (R3*3)
\%j
ambient space f(vy)
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Volume Model

Variant: Thin-Plate-Splines
e Use regularizer that penalizes curved deformation

E(regularizer) (f) _ J‘Hf (X) 2 dX
4

second derivative (IR3*3)

H,=V(Vf)

ambient space f(vy)
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How does the deformation look like?

as-rigid-as
possible
volume

/
\

plate
original splines
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Isometric Regularizer

Intrinsic Matching (2-Manifold)
e Target shape is given and complete
e Isometric embedding

[ (regularizer) ( £ _ HVfo _1] dx

first fund. form (S,, intrinsic)

vf

/ \A
1q

>,
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Elastic “Thin Shell” Regularizer

“Thin Shell” Energy
e Differential geometry point of view

= Preserve first fundamental form I
= Preserve second fundamental form Il
= ...in a least least-squares sense

e Complicated to implement
e Usually approximated

1

I

S\/I;Tf\’

I

SN\

>,



Deformable ICP

How to build a deformable ICP algorithm
e Pick a surface distance measure
e Pick an deformation model / regularizer

E( f ) _ E(match) ( f ) 4 E(regularizer) ( f )

g

?(
/
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Deformable ICP

How to build a deformable ICP algorithm

Pick a surface distance measure
Pick an deformation model / regularizer
Initialize f(S,) with S, (i.e., f=id)
Pick a non-linear optimization algorithm
= Gradient decent (easy, but bad performance)
= Preconditioned conjugate gradients (better)
= Newton, Gauss Newton (even better, but more work)

= LBGFS (quick & effective)
= Always use analytical derivatives!

Run optimization
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Animation Reconstruction



Real-time Scanners

%

space-time color-coded motion compensated
stereo structured light structured light

courtesy of James Davis, courtesy of Phil Fong,  courtesy of Séren Konig,
UC Santa Cruz Stanford University TU Dresden
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Animation Reconstruction

Problems
e Noisy data
e Incomplete data (acquisition holes)
e No correspondences

missing correspondences
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Animation Reconstruction

Remove noise, outliers

Fill-in holes
(from all frames)

Dense correspondences
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Urshape Factorization Approach



“Factorization”

t=0

f

urshape

data

deformation
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Components

Variational Model

e Given an initial estimate,
improve urshape and deformation

Numerical Discretization
e Shape
e Deformation

Domain Assembly
e Getting an initial estimate
e Urshape assembly
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Components

Variational Model

e Given an initial estimate,
improve urshape and deformation

Numerical Discretization
e Shape
e Deformation

Domain Assembly
e Getting an initial estimate
e Urshape assembly
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Energy Minimization

Energy Function w w @
-

E(f, S) = Edata + Edeform + Esmooth f

f deformation

urshape

Components
o £, ..(f, S)—data fitting
* Egerorml(f) — elastic deformation, smooth trajectory

o £ .otn(S)—smooth surface

Optimize S, f alternatingly
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Data Fitting

Data fitting
e Necessary: f(S) = D,

e Truncated squared distance
function (point-to-plane)

..........
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Elastic Deformation Energy

Ero (f)

eform(

Regularization

e Elastic energy

.
o

e Smooth trajectories e

o,
.
........
a
.




Surface Reconstruction

.

Esmoot (S) “
h AN
s

Data fitting

e Smooth surface
e Fitting to noisy data
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Factorization

t=0

f

urshape

data

deformation
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Summary: Variational Model

E(S9 f7 d) = Ematch (S’ f’ d) + (Erigid + Evolume + E accel + veloczty)(S f) + E smooth (S)
N y N —

YV
data deformatlo n urshape

By (51, =SS trune(dist (d, £(S)*)

t=1 i=1

2
”gld(S f) T rigid Tvxf(X’ t) _IHFdx
V(S)
volume (S f) = . @ 01 (x)q ~ - 1)2 dx
V(S)

2 2
0” 0
Eaccel(S’ f) = J-a)acc (x)[g f(Xa t)J dx Evelocity (87 f) = J‘a)velocity (x)ta f(Xa t)j dx
S S

T J— (S) = J-a)smooth (x) V S(x)) dx
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Components

Variational Model

e Given an initial estimate,
improve urshape and deformation

Numerical Discretization
e Shape
e Deformation

Domain Assembly
e Getting an initial estimate
e Urshape assembly

55



Discretization

o
o

|_@-—\®\ ’
\s_e,

Sampling:
e Full resolution geometry
e Subsample deformation

D)

| geometry

7/

|
() deformation
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Discretization

o %

w geometry

|

| -< :

© Q () deformation
S o - e, -

Sampling:
e Full resolution geometry
= High frequency
e Subsample deformation

= Low frequency
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Discretization

Sampling:
e Full resolution geometry
= High frequency, stored once

e Subsample deformation

= Low frequency, all frames = more costly
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Shape Representation

Shape Representation:

e Graph of surfels (point + normal + local connectivity)
e £

mooth — Neighboring planes should be similar

e Same as the bunny exercise...
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...but how about Neighborhoods?

Topology estimation
e Domain of S, base shape (topology)
e Here, we assume this is easy to get

e In the following
= k-nearest neighborhood graph

= Typically: k=6..20
Limitations

e This requires dense enough sampling
e Does not work for undersampled data
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Deformation

geometry

Se____-"" “thick shell”

Volumetric Deformation Model
e Surfaces embedded in “stiff” volumes
e Easier to handle than “thin-shell models”

e General —works for non-manifold data
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Deformation

Se____-"" “thick shell”

Deformation Energy

e Keep deformation gradients Vf as-rigid-as-possible
e This means: Vf'Vf =1

o Minimize: Eqepop = J 7/ | | VE(X,E)TVE(x,t) — 1| |2 dxdt
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Additional Terms

More Regularization
e Volume preservation: E = fo\,lldet(Vf)—lll2

= Stability

« Acceleration: Ene= 7S ull0F £112
= Smooth trajectories

e Velocity (weak): E . = foVH d, fl|
= Damping

-------

L
"
.
L
L

.
o
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Discretization

-5 %

w geometry
O~ |
Q 10,

~ B ”
-O deformation

How to represent the deformation?
e Goal: efficiency

e Finite basis:
As few basis functions as possible
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Discretization

e @&

w geometry
@~ '
Q ©

N

O deformation
Meshless finite elements
e Partition of unity, smoothness

e Linear precision

e Adaptive sampling is easy
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Meshless Finite Elements

Topology:

e Separate deformation
nodes for disconnected
pieces

 Need to ensure
= Consistency
= Continuity
e Euclidean / intrinsic
distance-based coupling rule

= See references for details
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Adaptive Sampling

Adaptive Sampling
e Bending areas
= Decrease rigidity

= Decrease thickness
= Increase sampling density

e Detecting bending areas:
residuals over many frames
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Components

Variational Model

e Given an initial estimate,
improve urshape and deformation

Numerical Discretization
e Deformation
e Shape

Domain Assembly
e Getting an initial estimate
e Urshape assembly
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Urshape Assembly

Adjacent frames are similar

e Solve for frame pairs first

e Assemble urshape step-by-step

frame 11 frame 12 frame 13 frame 14 frame 15 frame 16

OOOOO

[data set courtesy of C. Theobald, MPC-VCC(]
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Hierarchical Merging

- § B § §

f(S)
f

S
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Hierarchical Merging

S EEE

Y

f(S) J
f ,fj

S
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Initial Urshapes

o R

»
)
Al A
{ b .",’ b
3
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Initial Urshapes

N EEE

73



NEEE

Alignment
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Align & Optimize
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Hierarchical Alignment
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Hierarchical Alignment
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Results



79 frames, 24M data pts, 21K surfels, 315 nodes
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120 frames,
30M data pts,
17K surfels,
1,939 nodes



34 frames,
4M data pts,
23K surfels,
414 nodes



